
1 INTRODUCTION  

Gaussian simulation is being used increasingly in the mineral 
resource industry to construct models of heterogeneity and un-
certainty.  Simulation proceeds within deemed homogeneous 
rock types or geological units.  The spatial extent of each rock 
type is modeled deterministically or stochastically before the 
simulation of continuous variables with Gaussian simulation.  
We are concerned only with the Gaussian simulation of con-
tinuous variables in this paper.  The rock types and continuous 
variable realizations are merged in one of two methods (1) the 
continuous variable is simulated over the entire area independ-
ently of the rock type and then the large realizations are clipped 
according to the limits of the rock type model, or (2) the con-
tinuous variable is simulated only within the rock type.  There 
is no theoretical difference in these approaches, but many prac-
titioners prefer the first approach because it is more flexible 
and the input statistics are reproduced better.  The fact that the 
input statistics are reproduced better is somewhat artificial 
since the large realization is clipped before being used for any 
heterogeneity or uncertainty assessment.  Statistical or ergodic 
fluctuations are expected for anything less than an infinite do-
main. 

The probability distribution of geologic variables is rarely 
Gaussian.  Most variables are mass or volume concentrations 
that are bounded between 0 and 100%.  Variables in small con-

centration are positively skewed and variables in large concen-
tration tend to be negatively skewed.  The original Z variable is 
transformed to a standard Gaussian variable prior to Gaussian 
simulation: 

( )( )1

Zy G F z−=  (1) 

where FZ(z) is the distribution of the original Z distribution.  
This distribution should be established carefully with decluster-
ing and/or debiasing as appropriate.  The distribution FZ(z) and 
its inverse are tabulated functions from the available data.  The 
G-1(•) notation represents the inverse of the cumulative Gaus-
sian distribution.  Although there is no analytical solution to 
G(•) or G-1(•), excellent polynomial approximations exist.  
Simulation proceeds in the Y-Gaussian units and the values are 
back transformed: 

( )( )1z F G y−=  (2) 

It is important to note that the distribution of back trans-
formed z-values need not match the initial reference distribu-
tion.  The reference distribution FZ(z) is only reproduced ex-
actly when the simulated y-values are exactly Gaussian with a 
mean of zero and a variance of one.  As suggested above, the 
smaller the domain (rock type) the more statistical fluctuations 
we expect.  Many practitioners associate these statistical fluc-
tuations to uncertainty in the geologic variable, which is rea-
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sonable.  There is additional uncertainty due to uncertainty in 
the input distribution and other statistical parameters; however, 
we are concerned only with these statistical or ergodic fluctua-
tions. 

Some theoreticians and practitioners believe that the target 
distribution FZ(z) is reproduced exactly because of the trans-
form/back transform.  That is simply not true.  The more the 
simulated Y values depart from a standard normal distribution, 
the more the back transformed Z values depart from the target 
distribution.  A post-processing transformation could be con-
sidered to enforce the target distribution FZ(z) using, for exam-
ple, the trans program of GSLIB (Journel & Xu, 1994); 
however, the fluctuations in the global distribution are often an 
important aspect of uncertainty.  The aim of this paper is to un-
derstand those fluctuations and to assess the risk for bias. 

2 ERGODIC FLUCTUATIONS  

Simulation from a multivariate Gaussian distribution is often 
implemented by a sequential method.  Although specific im-
plementation choices are important, considering spectral or 
matrix simulation methods would lead to very similar results.  
The fluctuations described here are not limited to the sequential 
algorithm.  The target reference distribution inside all Gaussian 
simulation implementations is the standard normal or Gaussian 
distribution with a mean of zero and a variance of one.  Simu-
lated realizations over a finite domain, however, would not ex-
actly reproduce a mean of zero and a variance of one because 
of statistical fluctuations.  The statistical fluctuations due to a 
finite domain size are sometimes referred to as ergodic fluctua-
tions.  In practice, ergodicity refers to how large the domain is 
relative to the range of correlation.  The fluctuations are due to 
a lack of ergodicity, that is, the domain is small relative to the 
range of correlation.  These fluctuations are significant. 

Consider a stationary Gaussian random function (RF) repre-
senting a spatially correlated distribution of N grid nodes.  The 
N grid nodes need not represent a contiguous 2 or 3-D array; 
the values could be clipped by geological boundaries or any 
other arbitrary limits.  A large number (L) of realizations are 
simulated at each of the N grid node values.  We could repre-
sent this set of realizations as: 
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Where the superscript (l) denotes the realization number 
and the subscript i denotes the grid node index.  The mean and 
variance of the realizations could be written: 
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We equally weight these statistics because each grid cell is 
assumed to represent the same volume.  The sampling distribu-
tions of the mean and variance in Equation 4 are of interest to 
us. 

When the realizations are unconditional, the mean of the 
means and the variance of the means can be calculated fairly 
straightforwardly: 
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This is derived from simple linear algebra and the decision 
of stationarity.  The covariance between the ith value and itself 
is, by definition, the variance, which is one in standard Gaus-
sian units; therefore, we can rewrite the variance in two parts: 
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The first 1/N part is the result of classical statistics and the 
second part is due to the spatial correlation between the N grid 
nodes.  In general the correlation is positive and the variance of 
the average is greater than the 1/N predicted from independent 
data.  The average covariance between all N2 pairs of points 
has been used for many years in geostatistics.  The distribution 
of the means has mean and variance values given in Equation 
5, which are easily predicted since we know the 
variogram/covariance model used in the construction of the re-
alizations.  Moreover, the shape of the distribution is likely to 
be Gaussian since the data are Gaussian, the mean is a linear 
combination and a linear combination of Gaussian variables is 
also Gaussian. 

The mean of the variances and the variance of the variances 
is more complex.  In fact, we can work out an estimate for the 
expected value of the variances in the same way that we de-
rived the result in Equation 5: 
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 (7) 
It would appear that the mean variance is closely related to 

the variance of the mean values (see Equations 5/6); however, 
we have not been able to verify this equation with simulation 
results.  Alternative simulation algorithms have been consid-
ered and the calculated variance in Equation 7 appears to un-
derestimate the mean variance in practice.  The fourth order 
statistic for the variance is complex.  It can be worked out and 
other (geo)statisticians may have done so in presence of spatial 
correlation.  We suspect that this has been worked out by 
Matheron with an approximation in terms of the covariance 
function.  In any case, the distribution of the variances has a 
mean given in Equation 7 and the variance could probably be 
worked out.  The shape of the distribution, however, is not 
Gaussian.  In general, the square of a Gaussian statistic follows 



a gamma distribution (which is closely related to the Chi-
square and Wishart distributions) (Johnson et al. 1994, Johnson 
& Wichern 1998).  The shape of the distribution of the stan-
dard deviation (which cannot go negative) is also skewed and 
is fit by another type of gamma distribution. 

There is a wide variety of notation and nomenclature used 
for the gamma distribution.  The following is from the NIST 
Engineering and Statistics Handbook available on the web (see 
reference list): 
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where µ is a location parameter (the minimum value), β is a 
scale or spread parameter and γ is a shape parameter.  The 
Γ( γ ) function is known as the incomplete gamma function and 
there is no analytical solution.  We used the polynomial ap-
proximation available in Numerical Recipes (Press et al. 2002).  
A γ value of about 2 is appropriate.  The µ value is close to 1 
for large domains and decreases as the ergodic fluctuations in-
crease (domain size decreasing or range of correlation increas-
ing).  The β value is small for large domains and increases as 
the ergodic fluctuations increase. 

Although the analytical solution to the sampling distribu-
tion of the variance is not readily available, we can establish 
the distributions by fitting the three parameter gamma distribu-
tion from simulated values.  An iterative procedure will be 
used here.  Fitting the distributions is somewhat unsatisfactory 
because we would have difficulty predicting the ergodic fluc-
tuations in the variance ahead of time; however, we would 
have difficult with such predictions anyway because of condi-
tioning data.  The fluctuations in presence of conditioning data 
would be significantly more complex than the equations pre-
sented above.  The numerical approach is quite useful. 

2.1 Small Example 
A small simulation study will be undertaken to illustrate the 

results described above.  One thousand realizations of a 50 by 
50 grid were generated for three cases: an isotropic range of 10 
units, an isotropic range of 25 units and an isotropic range of 
50 units.  In all cases, a nugget effect of 0.1 was considered 
and a spherical structure with sill component of 0.9.  The 
sgsim program from GSLIB (Deutsch & Journel 1998) was 
used for simulation.  The search was set to the variogram range 
and a large number of previously simulated values were chosen 
(24) to ensure reasonable results.  As required by theory, sim-
ple kriging was used in the simulation. 

There is always a question of whether the results we see are 
due to true sampling of the multivariate distribution or to par-
ticular implementation choices.  The lusim program from 
GSLIB was also considered to verify that the results are the 
same.  The upfront matrix setup for lusim was significant, 
but both sgsim and lusim required about the same amount 
of computer time.  The ergodic fluctuations from sgsim and 

lusim are virtually identical.  The summary statistics of er-
godic fluctuations shown in Figure 1 are the same within 1/10th 
of 1 percent.  The implementation of LU and SGS are radically 
different; thus, we are confident that the results are representa-
tive samples from a multivariate Gaussian distribution. 

Figure 1 shows some results.  The top row of Figure 1 
shows the first realization for a visual appreciation of the scale 
of variability.  The second row shows histograms of the mean 
values.  The frequency scale changes, but the limits of -1.5 to 
1.5 remain the same on all three histograms.  As expected, the 
variability increases as the range of correlation increases (from 
left to right).  The blue line is the expected mean of 0.0 and the 
red line is the expected Gaussian distribution for the mean val-
ues.  The variance values for the expected Gaussian distribu-
tions were calculated as in Equation 5 (using the GSLIB-like 
gammabar program).  The observed variance values match 
very closely to those predicted by theory (we expect standard 
deviations of 0.1364, 0.3170, and 0.5475). 

The third row of Figure 1 shows histograms of the variance 
values.  The blue line is the ergodic limit of 1.0.  The mean 
variances are higher than expected; we expect 0.9814, 0.8995 
and 0.7002, but we get 0.9867, 0.9349, and 0.8128.  These 
higher values are obtained from both LU and SGS; therefore, 
we expect that Equation 7 is incorrect.  The fitted Gamma dis-
tributions appear quite reasonable.  A better fit could likely be 
obtained with a Gaussian distribution when the fluctuations are 
small.  The γ parameter is not that stable; equally good fits 
could be obtained with different values.  The µ parameter de-
creases with increasing range and the β parameter increases 
with increasing range, as expected.  The fitted parameters for 
the distribution of variances are shown below: 

 
Case γ parameter µ parameter β parameter 
10/50 3.784 0.856 0.035 
25/50 3.592 0.673 0.073 
50/50 3.650 0.495 0.087 

 
The last row in Figure 1 shows the scatterplot of the realiza-

tion means versus the realization variance values; note that 
there is no correlation.  The bivariate distribution of the mean 
and variance could reliably be written as the product of a uni-
variate Gaussian pdf for the mean and a univariate Gamma pdf 
for the variance.  In practice, we would generate a number of 
realizations to understand the ergodic fluctuations due to the 
spatial correlation structure, the size of the domain and the 
conditioning data we have available.  For the next step, we may 
want to have fitted distributions for the mean and variance.  
Now that we understand ergodic fluctuations we must see how 
they affect histogram reproduction in original Z units. 

3 BACK TRANSFORMATION TO ORIGINAL  
Z UNITS 

The back transformation of simulated Gaussian Y-values 
back to original Z-units has the potential to introduce some in-
teresting problems.  The transformation/back transformation of 
Equations 1 and 2 may be analytically defined when the Z-
distribution FZ(z) is defined analytically.  In general, however, 



the distribution FZ(z) is defined by a lookup table.  Figure 2 
shows a schematic illustration that is often used to explain how 
the transformation works.  A one to one reversible transforma-
tion is setup using the global distribution.  Quantiles of local or 
conditional distributions are transformed using the global trans-
formation.  As mentioned above, most histograms of geologic 
variables are not Gaussian.  We often deal with concentrations 
that are bounded between 0 and 100%.  Variables in small con-
centration are positively skewed and variables in large concen-
tration tend to be negatively skewed.  The affect of a skewed Z 
distribution on the transformation is the subject of this section. 

A simulated realization with a perfectly standard Gaussian 
distribution (mean of 0 and variance of 1) would be back trans-
formed to the global Z-distribution.  Any deviations from a 
Gaussian shape, a mean of 0 or a variance of 1 would lead to 
deviations from the global Z distribution.  We will be primarily 
concerned with deviations in the mean and variance (as in the 
bottom scatterplots on Fig. 1).  Figure 3 illustrates the concern 
of this section.  The fluctuations in the mean and variance are 
understood in Gaussian units (the right side), but we would like 
to verify that they do not cause any bias in original Z units.  
Theoretically, we expect no bias, but experience often shows 
that the back transformed values become biased when care is 
not taken in Gaussian simulation. 

3.1 Small Example 
We consider positively skewed distributions typified by the 

lognormal distribution.  The lognormal distribution is special 
because there are analytical links between the Z and Y units.  
We do not build on those links in this paper because there is no 
need to limit our results to the lognormal case.  For illustration, 
consider an original Z distribution as lognormal with a mean of 
1.0 and a variance of 4.0; the coefficient of variation is 2.0, 
which is considered typical of a fairly highly skewed distribu-
tion.  The bivariate distribution of the mean and variance is de-
fined in the previous section.  The distribution for the mean is 
normal and the distribution for the variance is a gamma distri-
bution.  The bivariate distribution is the product of these two 
marginal distributions since we have observed independence 
between the mean and variance.  The bivariate space of the 
mean and variance is sampled by regular intervals in the Gaus-
sian mean and the Gaussian variance, the values are back trans-
formed and the bivariate probability values are used as 
weights.  The mean/variance relations on the bottom of Figure 
1 have been back transformed using this approach (as the 
schematic on Fig. 3 indicates) using a highly skewed log-
normal distribution.  Histograms of the mean values are shown 
on Figure 4.  We see no bias in the first case (20% range) and 
then slight biases in the latter two cases.  The magnitude of the 
bias is not considered significant given the overall spread of 
the mean values. 

The uncertainty in the overall average shown on Figure 4 is 
very significant, even for the case where the range is only 20% 
of the field size; although the global average is 1.0 the average 
can range from 0.5 to 1.5 in the very congenial case where the 
range is small.  There can be no doubt that ergodic fluctuations 
constitute an important part of uncertainty.  It would be an er-
ror to transform them away by insisting that each realization 

reproduce the target mean and variance exactly.  Our concern 
is an overall bias.  We conclude that we would see no bias if 
the mean and variance in Gaussian space were correct.  We 
have seen more significant biases in practical applications.  
There are a number of practical reasons for biases being intro-
duced into the simulated values in original units. 

3.2 Bias due to Inflated Variance 
The multiple back transformation scheme proposed above 

can be used to assess the bias due to an inflated variance.  The 
distribution for the mean is left alone and the distribution of 
variances is increased slightly.  We would expect no bias in the 
resulting mean of the Z values if the original Z distribution is 
symmetric; we would expect an increasing bias if the original 
Z distribution is skewed.  We can numerically assess the bias 
given (1) the sampling distributions for the mean and variance, 
(2) the transformation lookup table, and (3) the increase in the 
variance.  For the sampling distributions from the 50% range 
case (Fig. 1), a lognormal distribution with a mean of 1 and a 
variance of 4, and for an increase in variance of 5% we see an 
increase in the mean of nearly 5% (4.6%).  The increase in bias 
for the lognormal case increases linearly with an increase in 
variance.  We can use this general result to understand the af-
fect of variance inflation due to poor implementation decisions. 

4 SOURCES OF BIAS 

Most inappropriate implementation choices lead to inflated 
variance in Gaussian units, which in turn leads to a bias in the 
mean.  We consider the effects of the conditioning data, a small 
search/small number of data, ordinary kriging, and collocated 
cokriging.  Three courses of action should be considered: (1) 
careful choice of parameters up front, e.g., choose simple 
kriging with a large search, (2) careful checking of the results 
before and after back transformation, and (3) a variance correc-
tion within the SGS code, e.g., 2 2ˆ fσ σ=  where f<1 is applied 
to every kriging variance at every location used for Gaussian 
simulation – the value of f must be determined by trial and er-
ror using the specific implementation choices. 

Conditioning data are essential.  They are used to infer the 
global statistical parameters we need and to constrain the local 
distributions of uncertainty.  The resulting simulated realiza-
tions, however, are affected by both the random function model 
and the conditioning data.  The ergodic fluctuations described 
above in Section 3 apply to unconditional realizations.  The 
fluctuations should decrease with additional conditioning data.  
The precise decrease in uncertainty could be assessed, but there 
is no general conclusion.  One source of bias due to condition-
ing data is stationarity.  Despite the fact that stationarity is a 
choice by the practitioner that the data belong to a homogene-
ous statistical population, large scale trends and border effects 
(that we call non-stationary features) often cause a bias in the 
mean and variance.  This is hard to illustrate except through 
anecdotes; however, the results of any study should be checked 
carefully.  

A too-small search and too few data in sequential simula-
tion can result in either an increased or decreased variance that 



causes under or over estimation of the global mean when com-
bined with a highly skewed original distribution.  Bias in the 
back transformed histogram is one problem.  Another impor-
tant problem is the poor reproduction of the variogram and 
volume-variance characteristics of the simulated realizations.  
In the lognormal scenario developed in Section 3, a reduction 
in the search radius to ½ of the range or a reduction in the 
number of data used in kriging leads to a 6.6% bias in the vari-
ance. 

Ordinary kriging (OK) will certainly lead to an increased 
variance because of the higher kriging variances that result 
from implicit estimation of the mean.  We have implemented a 
two-pass simulation procedure where OK is performed for the 
mean and simple kriging is performed for the variance calcula-
tion; it did not work very well.  OK may be preferred because 
it is considered a more robust estimator; however, the global 
distribution is always used in simulation through the variance 
and the implicit reliance on the back transformation.  In the 
lognormal scenario developed in Section 3, OK leads to a 5.5% 
bias in the variance and, consequently, the mean. 

Collocated cokriging is particularly troublesome in sequen-
tial simulation.  The bias in the variance can easily be 20 to 
40%, which is not so bad because it is immediately obvious.  
More subtle biases in the 5 to 10% range are common and not 
always recognized by the practitioner.  Variance correction by 
an “f” factor is almost always required.  Biases are particularly 
bad if the secondary data has greater continuity than the pri-
mary variable being simulated and if the absolute value of the 
correlation is within the 0.5 to 0.9 range. 

5 CONCLUSIONS 

Geologists and Engineers are being asked to quantify risk 
and uncertainty.  Geostatistical simulation is a powerful tool 
for that purpose.  Gaussian simulation algorithms are the sim-
plest and easiest to apply, yet there are many important imple-
mentation details.  We make the following conclu-
sions/recommendations: 
• Statistical/ergodic fluctuations are a very important factor 

in uncertainty assessment and they should not be trans-
formed away by insisting that every realization match the 
global distribution. 

• There is no significant bias introduced by the back trans-
form of highly skewed data provided that the ergodic fluc-
tuations are within those expected by the multivariate 
Gaussian model.  Unconditional simulation can be used to 
understand the reasonably expected fluctuations. 

• Forget whatever you learned about kriging.  Do not use 
ordinary kriging; simple kriging is required for unbiased 
results.  Do not limit the search neighborhood; set the 
neighborhood size equal to the variogram range.  Do not 
limit the number of samples; use at least 24 samples in se-
quential Gaussian simulation. 

• Ergodic fluctuations are not the only source of uncertainty; 
some form of spatial bootstrap should be considered to as-
sess uncertainty in the target input statistics. 

A systematic positive bias in a global resource estimate 
would be a serious error.  Biases can be avoided by careful at-
tention to these implementation decisions and careful checking 
of the results. 
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Figure 1: Illustration of ergodic fluctuations for three small 2-D examples with ranges of 20%, 50%, and 100% of the domain size 
(left to right).  The top row shows color scale maps of the first realization, the second row shows the distributions of 1000 mean 
values, the third row shows the distributions of the 1000 variance values, and the bottom row shows scatterplots of the mean and 
variance values. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Schematic illustration of normal score transform.  The original Z- data are on the left and the Gaussian Y-values are on the 
right.  The top figures are the global CDFs and the bottom figures represent local CDFs.  Quantiles are transformed using the global 
distribution (the three part blue line). 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Schematic illustration of how ergodic fluctuations in Gaussian Y units relate back to fluctuations in original Z units.  The 
back transformation must be performed by numerical integration using the transformation illustrated on Figure 2.  The back trans-
formation of one realization is illustrated by the light blue arrow with the “Numerical integration” bubble. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Histograms of the mean values in original units assuming a Z distribution that is lognormal with a mean of 1.0 and a vari-
ance of 4.0.  The three cases correspond to the ergodic fluctuations on Figure 1, that is, a variogram of 20%, 50% and 100% of the 
size of the domain.  Note the slightly increasing bias and significantly increasing spread as the ergodic fluctuations increase. 

 
 


